3.48 \(\int \sqrt{a+b x^2} \, dx\)

Optimal. Leaf size=46 \[ \frac{1}{2} x \sqrt{a+b x^2}+\frac{a \tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a+b x^2}}\right )}{2 \sqrt{b}} \]

[Out]

(x*Sqrt[a + b*x^2])/2 + (a*ArcTanh[(Sqrt[b]*x)/Sqrt[a + b*x^2]])/(2*Sqrt[b])

_______________________________________________________________________________________

Rubi [A]  time = 0.0262312, antiderivative size = 46, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 11, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.273 \[ \frac{1}{2} x \sqrt{a+b x^2}+\frac{a \tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a+b x^2}}\right )}{2 \sqrt{b}} \]

Antiderivative was successfully verified.

[In]  Int[Sqrt[a + b*x^2],x]

[Out]

(x*Sqrt[a + b*x^2])/2 + (a*ArcTanh[(Sqrt[b]*x)/Sqrt[a + b*x^2]])/(2*Sqrt[b])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 3.1287, size = 39, normalized size = 0.85 \[ \frac{a \operatorname{atanh}{\left (\frac{\sqrt{b} x}{\sqrt{a + b x^{2}}} \right )}}{2 \sqrt{b}} + \frac{x \sqrt{a + b x^{2}}}{2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((b*x**2+a)**(1/2),x)

[Out]

a*atanh(sqrt(b)*x/sqrt(a + b*x**2))/(2*sqrt(b)) + x*sqrt(a + b*x**2)/2

_______________________________________________________________________________________

Mathematica [A]  time = 0.0285239, size = 49, normalized size = 1.07 \[ \frac{1}{2} x \sqrt{a+b x^2}+\frac{a \log \left (\sqrt{b} \sqrt{a+b x^2}+b x\right )}{2 \sqrt{b}} \]

Antiderivative was successfully verified.

[In]  Integrate[Sqrt[a + b*x^2],x]

[Out]

(x*Sqrt[a + b*x^2])/2 + (a*Log[b*x + Sqrt[b]*Sqrt[a + b*x^2]])/(2*Sqrt[b])

_______________________________________________________________________________________

Maple [A]  time = 0.001, size = 36, normalized size = 0.8 \[{\frac{x}{2}\sqrt{b{x}^{2}+a}}+{\frac{a}{2}\ln \left ( x\sqrt{b}+\sqrt{b{x}^{2}+a} \right ){\frac{1}{\sqrt{b}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((b*x^2+a)^(1/2),x)

[Out]

1/2*x*(b*x^2+a)^(1/2)+1/2*a/b^(1/2)*ln(x*b^(1/2)+(b*x^2+a)^(1/2))

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \text{Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(b*x^2 + a),x, algorithm="maxima")

[Out]

Exception raised: ValueError

_______________________________________________________________________________________

Fricas [A]  time = 0.220714, size = 1, normalized size = 0.02 \[ \left [\frac{2 \, \sqrt{b x^{2} + a} \sqrt{b} x + a \log \left (-2 \, \sqrt{b x^{2} + a} b x -{\left (2 \, b x^{2} + a\right )} \sqrt{b}\right )}{4 \, \sqrt{b}}, \frac{\sqrt{b x^{2} + a} \sqrt{-b} x + a \arctan \left (\frac{\sqrt{-b} x}{\sqrt{b x^{2} + a}}\right )}{2 \, \sqrt{-b}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(b*x^2 + a),x, algorithm="fricas")

[Out]

[1/4*(2*sqrt(b*x^2 + a)*sqrt(b)*x + a*log(-2*sqrt(b*x^2 + a)*b*x - (2*b*x^2 + a)
*sqrt(b)))/sqrt(b), 1/2*(sqrt(b*x^2 + a)*sqrt(-b)*x + a*arctan(sqrt(-b)*x/sqrt(b
*x^2 + a)))/sqrt(-b)]

_______________________________________________________________________________________

Sympy [A]  time = 6.34179, size = 41, normalized size = 0.89 \[ \frac{\sqrt{a} x \sqrt{1 + \frac{b x^{2}}{a}}}{2} + \frac{a \operatorname{asinh}{\left (\frac{\sqrt{b} x}{\sqrt{a}} \right )}}{2 \sqrt{b}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b*x**2+a)**(1/2),x)

[Out]

sqrt(a)*x*sqrt(1 + b*x**2/a)/2 + a*asinh(sqrt(b)*x/sqrt(a))/(2*sqrt(b))

_______________________________________________________________________________________

GIAC/XCAS [A]  time = 0.228143, size = 50, normalized size = 1.09 \[ \frac{1}{2} \, \sqrt{b x^{2} + a} x - \frac{a{\rm ln}\left ({\left | -\sqrt{b} x + \sqrt{b x^{2} + a} \right |}\right )}{2 \, \sqrt{b}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(b*x^2 + a),x, algorithm="giac")

[Out]

1/2*sqrt(b*x^2 + a)*x - 1/2*a*ln(abs(-sqrt(b)*x + sqrt(b*x^2 + a)))/sqrt(b)